Author Affiliations
Abstract
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
In the past few years, many groups have focused on the research and development of GaN-based ultraviolet laser diodes (UV LDs). Great progresses have been achieved even though many challenges exist. In this article, we analyze the challenges of developing GaN-based ultraviolet laser diodes, and the approaches to improve the performance of ultraviolet laser diode are reviewed. With these techniques, room temperature (RT) pulsed oscillation of AlGaN UVA (ultraviolet A) LD has been realized, with a lasing wavelength of 357.9 nm. Combining with the suppression of thermal effect, the high output power of 3.8 W UV LD with a lasing wavelength of 386.5 nm was also fabricated.
Journal of Semiconductors
2024, 45(1): 011501
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Journal of Semiconductors
2022, 43(1): 010501
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
In this work, we reported the room-temperature continuous-wave operation of 6.0 W GaN-based blue laser diode (LD), and its stimulated emission wavelength is around 442 nm. The GaN-based high power blue LD is grown on a c-plane GaN substrate by metal organic chemical vapor deposition (MOCVD), and the width and length of the ridge waveguide structure are 30 and 1200 μm, respectively. The threshold current is about 400 mA, and corresponding threshold current density is 1.1 kA/cm2.
Journal of Semiconductors
2021, 42(11): 112801
作者单位
摘要
1 中国农业大学理学院应用物理系, 北京 100083
2 中国科学院半导体研究所集成光电子国家重点实验室, 北京 100083
研究了碳杂质对p-GaN的补偿作用。采用金属有机化学气相沉积法生长GaN∶Mg材料,实验发现,当生长温度从1000 ℃提高到1050 ℃时,p-GaN的电阻率减小,空穴浓度增大。通过光致发光测试,发现随着生长温度的升高,尽管p-GaN的电阻率减小,但是Mg杂质的自补偿效应增强。进一步结合二次离子质谱测试,发现高温生长的p-GaN材料中碳杂质浓度更低,碳杂质在p-GaN中可能形成施主,从而补偿受主,增大p-GaN的电阻率。因此,在p-GaN中,碳杂质补偿相对于Mg杂质自补偿具有更重要的作用,抑制碳杂质对p型掺杂p-GaN非常重要。
材料 p-GaN 补偿作用 碳杂质 二次离子质谱 
中国激光
2021, 48(13): 1303001
梁锋 1赵德刚 1,2,*江德生 1刘宗顺 1[ ... ]杨静 1
作者单位
摘要
1 中国科学院半导体研究所集成光电子学国家重点实验室, 北京 100083
2 中国科学院大学材料科学与光电技术学院, 北京 100049
详细研究了n型AlGaN限制层与InGaN上波导对GaN基绿光激光器光场分布与电学特性的影响,结果表明:增加n型AlGaN限制层厚度或提高InGaN上波导中的铟组分可以明显抑制GaN基绿光激光器的光场泄漏,改善光场分布;相比In0.02Ga0.98N上波导,采用更高铟组分的In0.05Ga0.95N上波导可增加光场限制因子,改善绿光激光器的性能。综合调控n型限制层和上波导才能有效改善GaN基绿光激光器的光场分布,提高激光器的性能。
激光光学 氮化镓 绿光激光器 光场分布 
中国激光
2020, 47(7): 0701018
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Journal of Semiconductors
2019, 40(12): 120402
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
GaN-based continuous-wave operated blue-violet laser diodes (LDs) with long lifetime are demonstrated, which are grown on a c-plane GaN substrate by metal organic chemical vapor deposition with a 10 × 600 μm2 ridge waveguide structure. The electrical and optical characteristics of a blue-violet LD are investigated under direct-current injection at room temperature (25 °C). The stimulated emission wavelength and peak optical power of the LD are around 413 nm and over 600 mW, respectively. In addition, the threshold current density and voltage are as small as 1.46 kA/cm2 and 4.1 V, respectively. Moreover, the lifetime is longer than 1000 hours under room-temperature continuous-wave operation.
Journal of Semiconductors
2019, 40(2): 022801
作者单位
摘要
1 北京科技大学 数理学院,北京 100083
2 中国科学院半导体研究所 集成光电子学国家重点实验室,北京 100083
InGaN基量子阱作为太阳电池器件的有源区时,垒层厚度设计以及实际生长对其光学特性的影响极为重要。采用金属有机化学气相沉积(MOVCD)技术,在蓝宝石衬底上外延生长了垒层厚度较厚的InGaN/GaN多量子阱,使用高分辨X射线衍射和变温光致发光谱研究了垒层厚度对InGaN多量子阱太阳电池结构的界面质量、量子限制效应及其光学特性的影响。较厚垒层的InGaN/GaN多量子阱的周期重复性和界面品质较好,这可能与垒层较薄时对量子阱的生长影响有关。同时,厚垒层InGaN/GaN多量子阱的光致发光光谱峰位随温度升高呈现更为明显的“S”形(红移-蓝移-红移)变化,表现出更强的局域化程度和更高的内量子效率。
InGaN/GaN多量子阱 金属有机化学气相沉积 光致发光 高分辨X射线衍射 InGaN/GaN multiple quantum wells MOCVD photoluminescence XRD 
半导体光电
2017, 38(5): 709
Author Affiliations
Abstract
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Electron leakage still needs to be solved for InGaN-based blue-violet laser diodes (LDs), despite the presence of the electron blocking layer (EBL). To reduce further electron leakage, a new structure of InGaN-based LDs with an InGaN interlayer between the EBL and p-type waveguide layer is designed. The optical and electrical characteristics of these LDs are simulated, and it is found that the adjusted energy band profile in the new structure can improve carrier injection and enhance the effective energy barrier against electron leakage when the In composition of the InGaN interlayer is properly chosen. As a result, the device performances of the LDs are improved.
250.0250 Optoelectronics 250.5960 Semiconductor lasers 
Chinese Optics Letters
2016, 14(6): 062502
Author Affiliations
Abstract
We design and fabricate compact, low loss, and high port-count optical power splitters of 1 × 128 and2 × 128 using silica-based planar lightwave circuit (PLC) technology on 6 inch quartz substrate. PLC tech-nology is mainly based on plasma enhanced chemical vapor deposition, photolithography, and etching. The measured results show that the insertion loss, uniformity, and wavelength-dependent loss of 1 × 128 and 2 × 128 optical power splitters are less than 23, 1.43, and 0.92 dB and 23.3, 1.8, and 1.3 dB, respectively, in the wavelength range from 1.26 to 1.65 mm. The polarization-dependent losses are less than 0.16 and 0.2 dB, respectively, in the wavelengths of 1.31, 1.49, and 1.55 mm.
230.7370 Waveguides 230.1360 Beam splitters 230.7390 Waveguides, planar 
Chinese Optics Letters
2014, 12(9): 092302

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!